6 research outputs found

    Ultrafast fabrication of Nanofiber-based 3D Macrostructures by 3D electrospinning

    Get PDF
    Fabrication of macroscopic three-dimensional (3D) structures made of nanofibers of widely used polymers is reported. 3D structures have several benefits over conventional flat two-dimensional (2D) structures by the added dimension. The structures have been fabricated by the 3D electrospinning technology that can build 3D structures rapidly due to certain additives in the solution and appropriate process conditions. The process parameters of 3D electrospinning have been identified and investigated to better understand the formation mechanism of the 3D build-up for polystyrene (PS), polyacrylonitrile (PAN), and polyvinylpyrrolidone (PVP). Different types of electrodes were inserted in the electrospinning chamber to alter the electric field and have better control over the shape of the 3D structure. The upscalability of this technology was investigated by using a standard electrospinner and a nozzle-free electrospinning setup. It was possible to manufacture 3D structures with these devices, highlighting the versatility of this technology. 3D electrospinning opens the pathway for the facile fabrication of macroscopic 3D structure with microfibrous features on a commercial scale

    Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering

    Get PDF
    A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering— poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)—has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus Apicotermes. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties

    Virus-Templated Near-Amorphous Iron Oxide Nanotubes

    Get PDF
    © 2016 American Chemical Society. We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages

    Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    Get PDF
    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine

    Nano-FTIR Absorption Spectroscopy of Molecular Fingerprints at 20 nm Spatial Resolution

    No full text
    We demonstrate Fourier transform infrared nanospectroscopy (nano-FTIR) based on a scattering-type scanning near-field optical microscope (s-SNOM) equipped with a coherent-continuum infrared light source. We show that the method can straightforwardly determine the infrared absorption spectrum of organic samples with a spatial resolution of 20 nm, corresponding to a probed volume as small as 10 zeptoliter (10<sup>–20</sup> L). Corroborated by theory, the nano-FTIR absorption spectra correlate well with conventional FTIR absorption spectra, as experimentally demonstrated with poly­(methyl methacrylate) (PMMA) samples. Nano-FTIR can thus make use of standard infrared databases of molecular vibrations to identify organic materials in ultrasmall quantities and at ultrahigh spatial resolution. As an application example we demonstrate the identification of a nanoscale PDMS contamination on a PMMA sample
    corecore